\begin{tabbing} $\forall$$A$, $B$:Realizer. \\[0ex]R{-}Feasible($A$) \\[0ex]$\Rightarrow$ R{-}Feasible($B$) \\[0ex]$\Rightarrow$ ($\exists$\=$i$,$j$:Id\+ \\[0ex](($\forall$$x$:Id. R{-}has{-}loc($A$;$x$) = $i$ = $x$ $\in$ $\mathbb{B}$) \\[0ex]\& ($\forall$$x$:Id. R{-}has{-}loc($B$;$x$) = $j$ = $x$ $\in$ $\mathbb{B}$) \\[0ex]\& ($\neg$($i$ = $j$)) \\[0ex]\& \=$\forall$$k$$\in$dom(R{-}da($A$;$i$)). \+ \\[0ex] \\[0ex]$T$\==R{-}da($A$;$i$)($k$) $\Rightarrow$ \+ \\[0ex]($\uparrow$isrcv($k$)) \-\\[0ex]$\Rightarrow$ \=(((source(lnk($k$)) = $i$ $\in$ Id) $\Rightarrow$ ($T$ $\subseteq$r R{-}da($B$;destination(lnk($k$)))($k$)?Top))\+ \\[0ex]\& ((destination(lnk($k$)) = $i$ $\in$ Id) $\Rightarrow$ (R{-}da($B$;source(lnk($k$)))($k$)?Void $\subseteq$r $T$))))) \-\-\-\\[0ex]$\Rightarrow$ $A$ $\parallel$ $B$ \end{tabbing}